首页
>新闻【乐动在线】中国有限公司>科技信息
探索微观世界,点亮人类生活 ——2023年诺贝尔科学奖综述

10月2日到4日,2023年诺贝尔生理学或医学奖、物理学奖、化学奖依次颁发,从促进新冠病毒有效mRNA疫苗的开发,到为电子拍摄影片的阿秒科学,再到点亮电视屏幕的量子点,科学家们展示了对微观领域不遗余力的研究。

用紫外线照射氨(由1个氮原子和3个氢原子组成)会使氢原子从氨中解离。
图片来源:南娜霍姆加德·利斯特/瑞典皇家理工学院

质子转移驱动着生物学和化学中的无数反应。线粒体是细胞的动力源,而质子泵对线粒体至关重要,因此准确了解其结构在这些反应过程中如何演变非常必要。不过,质子转移发生在几飞秒内,速度极快。

想要捕捉质子转移,可以向分子发射X射线,再利用射线研究分子演化过程中的结构。遗憾的是,X射线仅与电子相互作用,而不与原子核相互作用,因此它不是最灵敏的方法。

为此, SLAC团队采用了超快电子衍射相机MeV-UED。他们利用紫外线照射氨气,解离或破坏其中一个氢氮键,然后发射一束电子穿过它并拍摄衍射电子。

团队不仅拍摄到氢与氮核分离的信号,还抓拍到分子结构的相关变化。更重要的是,散射的电子以不同的角度射出,因此它们可分离两个信号。

研究人员表示,在一个实验中同时拥有对电子敏感和对原子核敏感的双重能力,非常难得而且非常有用。如果能看到原子解离时最初发生了什么,无论是原子核还是电子首先分离,人们就能回答有关解离反应是如何发生的问题。

这些信息让科学家越来越接近质子转移之谜的答案,有助于回答化学和生物学中更多的问题。这一成果还将对结构生物学产生重要影响,因为当前的X射线晶体学和冷冻电子显微镜等传统方法很难“看到”质子。

团队希望提高电子束的强度并提高实验的时间分辨率,以便能够真正了解质子随时间解离的每一个步骤。



Produced By 大汉网络 大汉版通发布系统